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Abstract
We review mechanisms of low-temperature electronic transport through a
quantum dot weakly coupled to two conducting leads. Transport in this case is
dominated by electron–electron interaction. At temperatures moderately lower
than the charging energy of the dot, the linear conductance is suppressed by
the Coulomb blockade. Upon further lowering of the temperature, however,
the conductance may start to increase again due to the Kondo effect. We
concentrate on lateral quantum dot systems and discuss the conductance in
a broad temperature range, which includes the Kondo regime.
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1. Introduction

In quantum dot devices [1] a small droplet of electron liquid is confined in a finite region
of space. The droplet can be attached by tunnelling junctions to massive electrodes to allow
electronic transport across the system. The conductance of such a device is determined by
the number of electrons on the dot N , which in turn is controlled by varying the potential
on the gate—an auxiliary electrode capacitively coupled to the dot [1]. At sufficiently low
temperatures the number of electrons N is an integer at almost any gate voltage Vg. Exceptions
are narrow intervals of Vg in which an addition of a single electron to the dot does not
significantly change the electrostatic energy of the system. Such a degeneracy between
different charge states of the dot allows for an activationless electron transfer through it,
whereas for all other values of Vg the activation energy for the conductance G across the dot is
finite. The resulting oscillatory dependence G(Vg) is the hallmark of the Coulomb blockade
phenomenon [1]. The contrast between the low- and high-conductance regions (Coulomb
blockade valleys and peaks, respectively) gets sharper at lower temperatures. This pattern of
G(Vg, T ) dependence is observed down to the lowest attainable temperatures in experiments
on tunnelling through small metallic islands [2]. However, small quantum dots formed in
GaAs heterostructures exhibit drastically different behaviour [3]: in some Coulomb blockade
valleys the dependence G(T ) is not monotonic and has a minimum at a finite temperature. This
minimum is similar in origin [4] to the well known non-monotonic temperature dependence
of the resistivity of a metal containing magnetic impurities [5]—the Kondo effect.

In this paper we review the theory of the Kondo effect in quantum dots,concentrating on the
so-called lateral quantum dot systems [1, 3], formed by gate depletion of a two-dimensional
electron gas at the interface between two semiconductors. These devices offer the highest
degree of tunability, yet allow for relatively simple theoretical treatment. At the same time,
many of the results presented below are directly applicable to other systems as well, including
vertical quantum dots [6–8], Coulomb-blockaded carbon nanotubes [8, 9], single-molecule
transistors [10], and stand-alone magnetic atoms on metallic surfaces [11].

2. Model of a lateral quantum dot system

The Hamiltonian of interacting electrons confined to a quantum dot has the following general
form:

Hdot =
∑

s

∑
i j

hi j d
†
isd js + 1

2

∑
ss ′

∑
i jkl

hi jkld
†
isd†

j s ′dks ′ dls . (2.1)

Here an operator d†
is creates an electron with spin s in the orbital state φi (r); hi j = h∗

j i is a
Hermitian matrix describing the single-particle part of the Hamiltonian. The matrix elements
hi jkl depend on the potential U(r − r′) of electron–electron interaction,

hi jkl =
∫

dr dr′ φ∗
i (r)φ

∗
j (r

′)U(r − r′)φk (r
′)φl(r). (2.2)

The Hamiltonian (2.1) can be simplified further provided that the quasiparticle spectrum is
not degenerate near the Fermi level, that the Fermi-liquid theory is applicable to the description
of the dot, and that the dot is in the metallic conduction regime. The first of these conditions is
satisfied if the dot has no spatial symmetries, which also implies that motion of quasiparticles
within the dot is chaotic.

The second condition is met if the electron–electron interaction within the dot is not too
strong, i.e. the gas parameter rs is small,

rs = (kFa0)
−1 � 1, a0 = κh̄2/e2m∗. (2.3)
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Here kF is the Fermi wavevector, a0 is the effective Bohr radius, κ is the dielectric constant of
the material, and m∗ is the quasiparticle effective mass.

The third condition requires the ratio of the Thouless energy ET to the mean single-particle
level spacing δE to be large [12],

g = ET/δE � 1. (2.4)

For a ballistic two-dimensional dot of linear size L the Thouless energy ET is of the order of
h̄vF/L, whereas the level spacing can be estimated as

δE ∼ h̄vFkF/N ∼ h̄2/m∗L2. (2.5)

Here vF is the Fermi velocity and N ∼ (kF L)2 is the number of electrons in the dot. Therefore,

g ∼ kF L ∼ √
N ,

so that having a large number of electrons N � 1 in the dot guarantees that condition (2.4) is
satisfied.

Under conditions (2.3) and (2.4) the random matrix theory (see [13, 14] for a review)
is a good starting point for description of non-interacting quasiparticles within the energy
strip of width ET about the Fermi level [12]. The matrix elements hi j in equation (2.1)
belong to a Gaussian ensemble [14]. Since the matrix elements do not depend on spin, each
eigenvalue εn of the matrix hi j represents a spin-degenerate energy level. The spacings εn+1−εn

between consecutive levels obey the Wigner–Dyson statistics [14]; the mean level spacing
εn+1 − εn = δE .

We now discuss the second term in Hamiltonian (2.1), which describes electron–electron
interaction. It turns out [15–17] that the vast majority of the matrix elements hi jkl are small.
Indeed, in the lowest order in 1/g � 1, the wavefunctionsφi (r) are Gaussian random variables
statistically independent of each other and of the corresponding energy levels [18]:

φ∗
i (r)φ j (r

′) = 1

L2
δi j F(|r − r′|), F(r) ∼ 〈exp(ik · r)〉FS. (2.6)

Here 〈· · ·〉FS stands for the averaging over the Fermi surface |k| = kF. In two dimensions,
the function F(r) decreases with r as F ∝ (kFr)−1/2 at kFr � 1, and saturates to F ∼ 1 at
kFr � 1. After averaging with the help of equation (2.6), the matrix elements (2.2) take the
form3

hi jkl = 2ECδilδ jk + ESδikδ jl.

We substitute this expression into Hamiltonian (2.1), and rearrange the sum over the spin
indices with the help of the identity

2δs1s2
δs ′

1s ′
2
= δs1s ′

1
δs2s ′

2
+ σs1s ′

1
· σs2s ′

2
, (2.7)

where σ = (σ x , σ y, σ z) are the Pauli matrices. This results in a remarkably simple
form [16, 17]

Hint = EC N̂2 − ESŜ2 (2.8)

of the interaction part of the Hamiltonian of the dot. Here

N̂ =
∑

ns

d†
nsdns, Ŝ =

∑
nss ′

d†
ns

σss ′

2
dns ′ (2.9)

are the operators of the total number of electrons in the dot and of the dot’s spin, respectively.

3 For simplicity we assumed here that φi (r)φ j (r′) ≡ 0, which corresponds to broken time-reversal symmetry.
See [17] for discussion of the general case.
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Figure 1. Equivalent circuit for a quantum dot connected to two leads by tunnelling junctions
and coupled via a capacitor (with capacitance Cg) to the gate. The total capacitance of the dot
C = CL + CR + Cg.

The first term in equation (2.8) represents the electrostatic energy. In the conventional
equivalent circuit picture, see figure 1, the charging energy EC is related to the total capacitance
C of the dot, EC = e2/2C . For a mesoscopic (kF L � 1) conductor, the charging energy is
large compared to the mean level spacing δE . Indeed, using the estimates C ∼ κL and (2.5),
we find

EC/δE ∼ L/a0 ∼ rs

√
N . (2.10)

Except for an exotic case of an extremely weak interaction, this ratio is large for N � 1; for
the smallest quantum dots formed in GaAs heterostructures, EC/δE ∼ 10 [3].

The second term in equation (2.8) describes the intradot exchange interaction, with the
exchange energy ES given by

ES =
∫

dr dr′ U(r − r′)F2(|r − r′|). (2.11)

In the case of a long-range interaction the potential U here should properly account for the
screening [17]. For rs � 1 the exchange energy can be estimated with logarithmic accuracy
by substituting U(r) = (e2/κr)θ(a0 − r) into equation (2.11) (here we took into account that
the screening length in two dimensions coincides with the Bohr radius a0), which yields

ES ∼ rs ln(1/rs)δE � δE . (2.12)

Estimate (2.12) is valid only for rs � 1. However, the ratio ES/δE remains small for
experimentally relevant4 values rs ∼ 1 as long as the Stoner criterion for the absence of itinerant
magnetism [19] is satisfied. This guarantees the absence of a macroscopic (proportional to N)
magnetization of a dot in the ground state [16].

Obviously, the interaction part of the Hamiltonian, equation (2.8), is invariant with respect
to a change of the basis of single-particle states φi(r). Picking up the basis in which the first
term in (2.1) is diagonal, we arrive at the universal Hamiltonian [16, 17],

Hdot =
∑

ns

εn d†
nsdns + EC

(
N̂ − N0

)2 − ESŜ2. (2.13)

We included in equation (2.13) the effect of the capacitive coupling to the gate electrode: the
dimensionless parameter N0 is proportional to the gate voltage, N0 = CgVg/e, where Cg is the
capacitance between the dot and the gate; see figure 1. The relative magnitude of various terms
not included in (2.13), as well as that of mesoscopic fluctuations of the coupling constants EC

and ES, is of the order of 1/g ∼ N−1/2 � 1.

4 For GaAs (m∗ ≈ 0.07 me, κ ≈ 13) the effective Bohr radius a0 ≈ 10 nm, whereas a typical density of the
two-dimensional electron gas, n ∼ 1011 cm−2 [3], corresponds to kF = √

2πn ∼ 106 cm−1. This gives kFa0 ∼ 1.



Topical Review R517

Figure 2. The confining potential forming a lateral quantum dot varies smoothly on the scale of
the de Broglie wavelength at the Fermi energy. Hence, the dot–lead junctions act essentially as
electronic waveguides with a well defined number of propagating modes.

As discussed above, in this limit the energy scales involved in (2.13) form a well defined
hierarchy

ES � δE � EC. (2.14)

If all the single-particle energy levels εn were equidistant, then the spin S of an even-N state
would be zero, while an odd-N state would have S = 1/2. However, the level spacings are
random. If the spacing between the highest occupied level and the lowest unoccupied one is
accidentally small, than the gain in the exchange energy, associated with the formation of a
higher-spin state, may be sufficient to overcome the loss of the kinetic energy (cf the Hund rule
in quantum mechanics). For ES � δE such deviations from the simple even–odd periodicity
are rare [16, 20, 21]. This is why the last term in (2.13) is often neglected. Equation (2.13)
then reduces to the Hamiltonian of the constant interaction model, widely used in the analysis
of experimental data [1].

Electron transport through the dot occurs via two dot–lead junctions. In a typical
geometry, the potential forming a lateral quantum dot varies smoothly on the scale of the
Fermi wavelength; see figure 2. Hence, the point contacts connecting the quantum dot to the
leads act essentially as electronic waveguides. Potentials on the gates control the waveguide
width, and, therefore, the number of electronic modes the waveguide supports: by making
the waveguide narrower one pinches the propagating modes off one by one. Each such mode
contributes 2e2/h to the conductance of a contact. The Coulomb blockade develops when the
conductances of the contacts are small compared to 2e2/h, i.e. when the very last propagating
mode approaches its pinch-off [22, 23]. Accordingly, in the Coulomb blockade regime each
dot–lead junction in a lateral quantum dot system supports only a single electronic mode [24].

As discussed below, for EC � δE the characteristic energy scale relevant to the Kondo
effect, the Kondo temperature TK, is small compared to the mean level spacing: TK � δE .
This separation of the energy scales allows us to simplify the problem even further by assuming
that the conductances of the dot–lead junctions are small. This assumption will not affect the
properties of the system in the Kondo regime. At the same time, it justifies the use of the
tunnelling Hamiltonian for description of the coupling between the dot and the leads. The
microscopic Hamiltonian of the system can then be written as a sum of three distinct terms,

H = Hleads + Hdot + Htunnelling, (2.15)

which describe free electrons in the leads, the isolated quantum dot, and tunnelling between
the dot and the leads, respectively. The second term in (2.15), the Hamiltonian of the dot Hdot,
is given by equation (2.13). We treat the leads as reservoirs of free electrons with continuous
spectra ξk , characterized by constant density of states ν, same for both leads. Moreover, since
the typical energies ω � EC of electrons participating in transport through a quantum dot in
the Coulomb blockade regime are small compared to the Fermi energy of the electron gas in
the leads, the spectra ξk can be linearized near the Fermi level, ξk = vFk; here k is measured
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from kF. With only one electronic mode per junction taken into account, the first and the third
terms in equation (2.15) have the form

Hleads =
∑
αks

ξk c†
αks cαks , ξk = −ξ−k, (2.16)

Htunnelling =
∑
αkns

tαnc†
αks dns + H.c. (2.17)

Here tαn are tunnelling matrix elements (tunnelling amplitudes) ‘connecting’ state n in the dot
with state k in lead α (α = R,L for the right/left lead). The randomness of states n translates
into the randomness of the tunnelling amplitudes. Indeed, the amplitudes depend on the values
of the electron wavefunctions at points rα of the contacts, tαn ∝ φn(rα). For kF L � 1 the
wavefunctions are Gaussian random variables. Equation (2.6) then results in

t∗
αn tα′n′ = ∣∣t2

αn

∣∣δαα′δnn′ . (2.18)

Average values of the tunnelling probabilities can be expressed via the conductances of the
dot–lead junctions Gα ,

h

2e2
Gα = �α

δE
∼ ν

∣∣t2
αn

∣∣
δE

. (2.19)

Here �α is the rate for an electron to escape from a discrete level n in the dot into lead α.

3. Rate equations and conductance across the dot

At high temperatures, T � EC, charging energy is negligible compared to the thermal energy
of electrons. Therefore the conductance of the device in this regime G∞ is not affected by
charging and, independently of the gate voltage,

1

G∞
= 1

GL
+

1

GR
. (3.1)

Dependence on N0 develops at lower temperatures,

δE � T � EC. (3.2)

The conductance is not suppressed only within narrow regions—Coulomb blockade peaks,
i.e. when the gate voltage is tuned sufficiently close to one of the points of charge degeneracy,

|N0 − N∗
0 | � T/EC; (3.3)

here N∗
0 is a half-integer number.

We will demonstrate this now using the method of rate equations [25]. In addition to
constraint (3.2), we will assume that the inelastic electron relaxation rate within the dot is
large compared to the escape rates �α . In other words, transitions between discrete levels in
the dot occur before the electron escapes to the leads5. Under this assumption the tunnellings
across the two junctions can be treated independently of each other. Condition (3.3), on the
other hand, allows us to take into account only two charge states of the dot which are almost
degenerate in the vicinity of the Coulomb blockade peak. For N0 close to N∗

0 these are the
states with N = N∗

0 ± 1/2 electrons on the dot. Hereafter we denote these states as |N〉 and
|N + 1〉. Finally, condition (3.2) enables us to replace the discrete single-particle levels within
the dot by a continuum with the density of states 1/δE .

5 Note that a finite inelastic relaxation rate requires inclusion of mechanisms beyond the model (2.13), e.g., electron–
phonon collisions.
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Applying the Fermi golden rule and using the described simplifications, we may write the
current Iα from the lead α into the dot as

Iα = 2π

h̄

∑
kns

|tαn |2δ(ξk + eVα + EN − εn − EN+1)

× {PN f (ξk)[1 − f (εn)] − PN+1 f (εn)[1 − f (ξk)]}.
Here f (ω) = [exp(ω/T ) + 1]−1 is the Fermi function, Vα is the potential on lead α (see
figure 1), EN and EN+1 are the electrostatic energies of charge states |N〉 and |N + 1〉, and PN

and PN+1 are the probabilities of finding the dot in these states. Replacing the summations
over n and k by integrations over the corresponding continua, we find

Iα = Gα

e
[PN F(E1 − E0 − eVα)− PN+1 F(E0 − E1 + eVα)] (3.4)

with F(ω) = ω/[exp(ω/T ) − 1]. In equilibrium, the current (3.4) is zero by the detailed
balance. When a finite current flows through the junction the probabilities PN and PN+1

deviate from their equilibrium values. In the steady state, the currents across the two junctions
satisfy

I = IL = −IR. (3.5)

Equations (3.4) and (3.5), supplemented by the obvious normalization condition PN+PN+1 = 1,
allow one to find PN , PN+1, and the current across the dot I in response to the applied bias
V = VL −VR. The linear conductance across the dot G = limV →0 d I/dV is then given by [25]

G = G∞
EC(N0 − N∗

0 )/T

sinh[2EC(N0 − N∗
0 )/T ]

. (3.6)

Here N0 − N∗
0 = 0 (half-integer N0) corresponds to the Coulomb blockade peak. In the

Coulomb blockade valleys (N0 �= N∗
0 ), conductance falls off exponentially with the decrease

of temperature, and all the valleys behave exactly the same way.

4. Activationless transport through a blockaded quantum dot

According to the rate equation theory [25], at low temperatures, T � EC, conduction through
the dot is exponentially suppressed in the Coulomb blockade valleys. This suppression occurs
because the process of electron transport through the dot involves a real transition to the state
in which the charge of the dot differs by e from the thermodynamically most probable value.
The probability of such fluctuation is proportional to exp(−EC|N0 − N∗

0 |/T ), which explains
the conductance suppression; see equation (3.5). Going beyond the lowest-order perturbation
theory in conductances Gα allows one to consider processes in which states of the dot with a
‘wrong’ charge participate in the tunnelling process as virtual states. The existence of these
higher-order contributions to the tunnelling conductance was envisioned first by Giaever and
Zeller [26]. The first quantitative theory of this effect, however, was developed much later [27].

The leading contributions to the activationless transport, according to [27], are provided
by the processes of inelastic and elastic co-tunnelling. Unlike the sequential tunnelling, in the
co-tunnelling mechanism, the events of electron tunnelling from one of the leads into the dot,
and tunnelling from the dot to the other lead occur as a single quantum process.

4.1. Inelastic co-tunnelling

In the inelastic co-tunnelling mechanism, an electron tunnels from a lead into one of the vacant
single-particle levels in the dot, while it is an electron occupying some other level that tunnels
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(a) (b) (c)

Figure 3. Examples of the co-tunnelling processes. (a) Inelastic co-tunnelling: transferring of an
electron between the leads leaves behind an electron–hole pair in the dot; (b) elastic co-tunnelling;
(c) elastic co-tunnelling with a flip of spin.

out of the dot; see figure 3(a). As a result, transfer of charge e between the leads is accompanied
by a simultaneous creation of an electron–hole pair in the dot.

Here we will estimate the contribution of the inelastic co-tunnelling to the conductance
deep in the Coulomb blockade valley, i.e. at almost integer N0. Consider an electron that
tunnels into the dot from lead L. If energy ω of the electron relative to the Fermi level is small
compared to the charging energy, ω � EC, then the energy of the virtual state involved in
the co-tunnelling process is close to EC. The amplitude Ain of the inelastic transition via this
virtual state to lead R is then given by

Ain = t∗
Ln tRn′

EC
. (4.1)

The initial state of this transition has an extra electron in the single-particle state k in lead L,
while the final state has an extra electron in state k ′ in lead R and an electron–hole pair in the
dot (state n is occupied; state n′ is empty).

Given the energy of the initial stateω, the number of available final states can be estimated
from the phase space argument, familiar from the calculation of the quasiparticle lifetime in
the Fermi liquid theory [28]. For ω � δE this number is of the order of (ω/δE)2. Since
the typical value of ω is T , the inelastic co-tunnelling contribution to the conductance can be
estimated as

G in ∼ e2

h

(
T

δE

)2

ν2|A2
in|.

Now using equations (2.18) and (2.19), we find [27]

G in ∼ h

e2
GLGR

(
T

EC

)2

. (4.2)

A comparison of equation (4.2) with the result of the rate equation theory (3.6) shows that
the inelastic co-tunnelling takes over the thermally activated hopping at moderately low
temperatures

T � Tin = EC

[
ln

(
e2/h

GL + GR

)]−1

. (4.3)

The smallest energy of the electron–hole pair is of the order of δE . At temperatures
below this threshold the inelastic co-tunnelling contribution to the conductance becomes
exponentially small. It turns out, however, that even at much higher temperatures this
mechanism becomes less effective than the elastic co-tunnelling.
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4.2. Elastic co-tunnelling

In the process of elastic co-tunnelling, transfer of charge between the leads is not accompanied
by the creation of an electron–hole pair in the dot. In other words, occupation numbers
of single-particle energy levels in the dot in the initial and final states of the co-tunnelling
process are exactly the same; see figure 3(b). Close to the middle of the Coulomb blockade
valley (at almost integer N0) the average number of electrons on the dot, N ≈ N0, is also an
integer. Both an addition and a removal of a single electron cost EC in electrostatic energy;
see equation (2.13). The amplitude of the elastic co-tunnelling process in which an electron is
transferred from lead L to lead R can then be written as

Ael =
∑

n

An, An = t∗
LntRn

θ(εn)− θ(−εn)

EC + |εn| . (4.4)

The two contributions to the partial amplitude An are associated with virtual creation of either
an electron if level n is empty (εn > 0), or of a hole if the level is occupied (εn < 0); the
relative sign difference between the two contributions originates in the fermionic commutation
relations.

With the help of equations (2.18) and (2.19) the average value of the elastic co-tunnelling
contribution to the conductance can be written as

Gel = 2e2

h
ν2

∣∣A2
el

∣∣ ∼ h

e2
GLGR

∑
n

(
δE

EC + |εn|
)2

.

Since for EC � δE the number of terms making significant contributions to the sum over n
here is large, and since the sum is converging, one can replace the summation by an integral
which results in [27]

Gel ∼ h

e2
GLGR

δE

EC
. (4.5)

Comparison with equation (4.2) shows that the elastic co-tunnelling dominates the electron
transport already at temperatures

T � Tel = √
ECδE, (4.6)

which may significantly exceed the level spacing. Note, however, that mesoscopic fluctuations
of Gel are strong [29], of the order of its average value (4.5). Thus, although Gel is always
positive (see equation (4.6)), the sample-specific value of Gel for a given gate voltage may
vanish [30].

5. Effective low-energy Hamiltonian

In the above discussion of the elastic co-tunnelling we made a tacit assumption that all single-
particle levels in the dot are either empty or doubly occupied. This, however, is not the case
when the dot has a non-zero spin in the ground state. A dot with an odd number of electrons, for
example, would necessarily have a half-integer spin S. In the most important case of S = 1/2
the top-most occupied single-particle level is filled by a single electron and is spin degenerate.
This opens a possibility of a co-tunnelling process in which a transfer of an electron between
the leads is accompanied by a flip of the electron’s spin with simultaneous flip of the spin on
the dot; see figure 3(c).

The amplitude of such a process, calculated in the fourth order in tunnelling matrix
elements, diverges logarithmically when the energy ω of an incoming electron approaches
zero. Since ω ∼ T , the logarithmic singularity in the transmission amplitude translates into
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a dramatic enhancement of the conductance G across the dot at low temperatures: G may
reach values as high as the quantum limit 2e2/h [31, 32]. This conductance enhancement is
not really a surprise. Indeed, in the spin-flip co-tunnelling process a quantum dot with odd
N behaves as an S = 1/2 magnetic impurity embedded in a tunnelling barrier separating two
massive conductors [33]. It has been known [34] since the mid-1960s that the presence of such
impurities leads to zero-bias anomalies in tunnelling conductance [35], which are adequately
explained [36, 37] in the context of the Kondo effect [5].

At energies well below the threshold ∼ δE for intradot excitations the transitions within
the (2S + 1)-fold degenerate ground state manifold of a dot can be conveniently described by
a spin operator S. The form of the effective Hamiltonian describing the interaction of the dot
with conduction electrons in the leads is then dictated by SU(2) symmetry6,

Heff =
∑
αks

ξk c†
αks cαks +

∑
αα′

Jαα′ (sα′α · S) (5.1)

with sαα′ = ∑
kk′ ss ′ c†

αks (σss ′/2) cα′k′s ′ . The sum over k in equation (5.1) is restricted to
|ξk | < . The exchange amplitudes Jαα′ form a 2×2 Hermitian matrix Ĵ . The matrix has two
real eigenvalues, the exchange constants J1 and J2 (hereafter we assume that J1 � J2). By an
appropriate rotation in the R–L space the Hamiltonian (5.2) can then be brought into the form

Heff =
∑
γ ks

ξkψ
†
γ ksψγ ks +

∑
γ

Jγ (sγ · S). (5.2)

Here the operatorsψγ are certain linear combinations of the original operators cR,L describing
electrons in the leads, and

sγ =
∑
kk′ ss ′

ψ
†
γ ks

σss ′

2
ψγ k′ s ′

is the local spin density of itinerant electrons in the ‘channel’ γ = 1, 2.
The symmetry alone is not sufficient to determine the exchange constants Jγ ; their

evaluation must rely upon a microscopic model. Here we briefly outline the derivation [24, 38]
of equation (5.1) for a generic model of a quantum dot system discussed in section 2 above.
For simplicity, we will assume that the gate voltage N0 is tuned to the middle of the Coulomb
blockade valley. The tunnelling (2.17) mixes the state with N = N0 electrons on the dot with
states having N ±1 electrons. The electrostatic energies of these states are high (∼EC), hence
the transitions N → N ± 1 are virtual, and can be taken into account perturbatively in the
second order in tunnelling amplitudes [39].

For Hamiltonian (2.13) the occupations of single-particle energy levels are good quantum
numbers. Therefore, the amplitude Jαα′ can be written as a sum of partial amplitudes,

Jαα′ =
∑

n

J n
αα′ . (5.3)

Each term in the sum here corresponds to a process during which an electron or a hole is
created virtually on level n in the dot, cf equation (4.4). For Gα � e2/h and ES � δE
the main contribution to the sum in (5.3) comes from singly occupied energy levels in the
dot. A dot with spin S has 2S such levels near the Fermi level (hereafter we assign indices
n = −S, . . . , n = S to these levels), each carrying a spin S/2S, and contributing

J n
αα′ = λn

EC
t∗
αn tα′n, λn = 2/S, |n| � S (5.4)

6 In writing equation (5.1) we omitted the potential scattering terms associated with the usual elastic co-tunnelling.
This approximation is well justified when the conductances of the dot–lead junctions are small, Gα � e2/h, in which
case Gel is also very small; see equation (4.5).
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to the exchange amplitude in (5.1). This yields

Jαα′ ≈
∑
|n|�S

J n
αα′ . (5.5)

It follows from equations (5.3) and (5.4) that

tr Ĵ = 1

EC

∑
n

λn
(|t2

Ln| + |t2
Rn|

)
. (5.6)

By restricting the sum over n here to |n| � S, as in (5.5), and taking into account that all λn

in (5.4) are positive, we find J1 + J2 > 0. Similarly, from

det Ĵ = 1

2E2
C

∑
m,n

λmλn|D2
mn |, Dmn = det

(
tLm tRm

tLn tRn

)
(5.7)

and equations (5.4) and (5.5) it follows that J1 J2 > 0 for S > 1/2. Indeed, in this case the
sum in (5.7) contains at least one contribution with m �= n; all such contributions are positive.
Thus, both exchange constants J1,2 > 0 if the dot’s spin S exceeds 1/2 [24]. The pecularities
of the Kondo effect in quantum dots with large spin are discussed in section 7 below.

Here we concentrate on the most common situation of S = 1/2 on the dot [3], considered
in detail in section 6. The ground state of such a dot has only one singly occupied energy level
(n = 0), so that det Ĵ ≈ 0; see (5.5) and (5.7). Accordingly, one of the exchange constants
vanishes,

J2 ≈ 0, (5.8)

while the remaining one, J1 = tr Ĵ , is positive. Equation (5.8) resulted, of course, from the
approximation made in (5.5). For model (2.13) the leading correction to (5.5) originates in
the co-tunnelling processes with an intermediate state containing an extra electron (or an extra
hole) on one of the empty (doubly occupied) levels. Such a contribution arises because the spin
on level n is not conserved by the Hamiltonian (2.13), unlike the corresponding occupation
number. Straightforward calculation [38] yields the partial amplitude in the form of (5.4), but
with

λn = − 2EC ES

(EC + |εn|)2 , n �= 0.

Unless the tunnelling amplitudes tα0 to the only singly occupied level in the dot are
anomalously small, the corresponding correction

δ Jαα′ =
∑
n �=0

J n
αα′ (5.9)

to the exchange amplitude (5.5) is small,∣∣∣∣δ Jαα′

Jαα′

∣∣∣∣ ∼ ES

δE
� 1;

see equation (2.14). To obtain this estimate, we assumed that all tunnelling amplitudes tαn are
of the same order of magnitude, and replaced the sum over n in (5.9) by an integral. A similar
estimate yields the leading contribution to det Ĵ ,

det Ĵ ≈ 1

E2
C

∑
n

λ0λn |D2
0n| ∼ − ES

δE

(
tr Ĵ

)2
,

or

J2/J1 ∼ −ES/δE . (5.10)
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According to (5.10), the exchange constant J2 is negative [40], and its absolute value is
small compared to J1. Hence, (5.8) is indeed an excellent approximation for large chaotic
dots with spin S = 1/2 as long as the intradot exchange interaction remains weak, ES � δE .7

Note that corrections to the universal Hamiltonian (2.13) also result in finite values of both
exchange constants, |J2| ∼ J1 N−1/2, and become important for small dots with N � 10 [32].
Although this may significantly affect the conductance across the system in the weak-coupling
regime T � TK, it does not lead to qualitative changes in the results for S = 1/2 on the dot, as
the channel with smaller exchange constant decouples at low energies [42]; see also section 7
below. With this caveat, we adopt approximation (5.8) in our description of the Kondo effect in
quantum dots with spin S = 1/2. Accordingly, the effective Hamiltonian of the system (5.2)
assumes the ‘block-diagonal’ form

Heff = H1 + H2 (5.11)

H1 =
∑

ks

ξkψ
†
1ksψ1ks + J (s1 · S) (5.12)

H2 =
∑

ks

ξkψ
†
2ksψ2ks (5.13)

with J = tr Ĵ > 0.

6. Kondo regime in transport through a quantum dot

To get an idea about the physics of the Kondo model (see [43] for recent reviews), let us first
replace the fermion field operator s1 in equation (5.12) by a single-particle spin-1/2 operator
S1. The ground state of the resulting Hamiltonian of two spins

H̃ = J (S1 · S)

is obviously a singlet. The excited state (a triplet) is separated from the ground state by the
energy gap J1. This separation can be interpreted as the binding energy of the singlet. Unlike
S1 in this simple example, the operator s1 in (5.12) is merely a spin density of the conduction
electrons at the site of the ‘magnetic impurity’. Because conduction electrons are freely moving
in space, it is hard for the impurity to ‘capture’ an electron and form a singlet. Yet, even a
weak local exchange interaction suffices to form a singlet ground state [44, 45]. However, the
characteristic energy (an analogue of the binding energy) for this singlet is given not by the
exchange constant J , but by the so-called Kondo temperature

TK ∼  exp(−1/ν J ). (6.1)

Using  ∼ δE and equations (5.6) and (2.19), one obtains from (6.1) the estimate

ln

(
δE

TK

)
∼ 1

ν J
∼ e2/h

GL + GR

EC

δE
. (6.2)

Since Gα � e2/h and EC � δE , the rhs of (6.2) is a product of two large parameters.
Therefore, the Kondo temperature TK is small compared to the mean level spacing,

TK � δE . (6.3)

It is this separation of the energy scales that justifies the use of the effective low-energy
Hamiltonian (5.1), (5.2) for the description of the Kondo effect in a quantum dot system.

7 Equation (5.8) holds identically for the Anderson impurity model [37] frequently employed to study transport
through quantum dots [31, 41]. In that model a quantum dot is described by a single energy level, which formally
corresponds to the infinite level spacing limit δE → ∞ of the Hamiltonian (2.13).
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Inequality (6.3) remains valid even if the conductances of the dot–lead junctions Gα are of the
order of 2e2/h. However, in this case estimate (6.2) is no longer applicable [46].

In our model, see equations (5.11)–(5.13),one of the channels (ψ2) of conduction electrons
completely decouples from the dot, while theψ1 particles are described by the standard single-
channel antiferromagnetic Kondo model [5, 43]. Therefore, the thermodynamic properties of
a quantum dot in the Kondo regime are identical to those of the conventional Kondo problem
for a single magnetic impurity in a bulk metal; thermodynamics of the latter model is fully
studied [47]. However, all the experiments addressing the Kondo effect in quantum dots test
their transport properties rather than thermodynamics. The electron current operator is not
diagonal in the (ψ1, ψ2) representation, and the contributions of these two sub-systems to the
conductance are not additive. Below we relate the linear conductance and, in some special
case, the non-linear differential conductance as well, to the t-matrix of the conventional Kondo
problem.

6.1. Linear response

The linear conductance can be calculated from the Kubo formula

G = lim
ω→0

1

h̄ ω

∫ ∞

0
dt eiωt

〈[
Î (t), Î (0)

]〉
, (6.4)

where the current operator Î is given by

Î = d

dt

e

2

(
N̂R − N̂L

)
, N̂α =

∑
ks

c†
αks cαks . (6.5)

Here N̂α is the operator of the total number of electrons in lead α. Evaluation of the
linear conductance proceeds similarly to the calculation of the impurity contribution to the
resistivity of dilute magnetic alloys (see, e.g., [48]). In order to take the full advantage of the
decomposition (5.11)–(5.13), we rewrite Î in terms of the operators ψ1,2. These operators are
related to the original operators cR,L representing the electrons in the right- and left-hand leads
via (

ψ1ks

ψ2ks

)
=

(
cos θ0 sin θ0

− sin θ0 cos θ0

) (
cRks

cLks

)
. (6.6)

The rotation matrix here is the same one that diagonalizes matrix Ĵ of the exchange amplitudes
in (5.1); the rotation angle θ0 satisfies the equation tan θ0 = |tL0/tR0|. With the help of
equation (6.6) we obtain

N̂R − N̂L = cos(2θ0)
(
N̂1 − N̂2

) − sin(2θ0)
∑

ks

(
ψ

†
1ksψ2ks + H.c.

)
. (6.7)

The current operator Î entering the Kubo formula (6.4) is to be calculated with the equilibrium
Hamiltonian (5.11)–(5.13). Since both N̂1 and N̂2 commute with Heff , the first term in (6.7)
makes no contribution to Î . When the second term in (6.7) is substituted into (6.5) and then
into the Kubo formula (6.4), the result, after integration by parts, can be expressed via two-
particle correlation functions such as

〈
ψ

†
1 (t)ψ2 (t)ψ

†
2 (0)ψ1(0)

〉
(see appendix B of [49] for

further details of this calculation). Due to the block-diagonal structure of Heff (see (5.11)),
these correlation functions factorize into products of the single-particle correlation functions
describing the (free)ψ2 particles and the (interacting)ψ1 particles. The result of the evaluation
of the Kubo formula can then be written as

G = G0

∫
dω

(
−d f

dω

)
1

2

∑
s

[−πν Im Ts(ω)
]
. (6.8)
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Here

G0 = 2e2

h
sin2(2θ0) = 2e2

h

4|t2
L0t2

R0|(|t2
L0| + |t2

R0|
)2 , (6.9)

f (ω) is the Fermi function, and Ts(ω) is the t-matrix for the Kondo model (5.12). The t-matrix
is related to the exact retarded Green function of the ψ1 particles in the conventional way,

Gks,k′ s(ω) = G0
k(ω) + G0

k(ω)Ts(ω)G
0
k′ (ω), G0

k = (ω − ξk + i0)−1.

Here Gks,k′ s(ω) is the Fourier transform of Gks,k′ s(t) = −iθ(t)〈{ψ1ks (t), ψ
†
1k′ s}〉, where 〈· · ·〉

stands for the thermodynamic averaging with Hamiltonian (5.12). In writing equation (6.8) we
took into account the conservation of the total spin (which implies that Gks,k′ s ′ = δss ′ Gks,k′ s ,
and that the interaction in (5.12) is local (which in turn means that the t-matrix is independent
of k and k ′).

6.2. Weak-coupling regime: TK � T � δE

When the exchange term in Hamiltonian (5.12) is treated perturbatively, the main contribution
to the t-matrix comes from the transitions of the type [50]

|ks, σ 〉 → ∣∣k ′s′, σ ′〉 . (6.10)

Here state |ks, σ 〉 has an extra electron with spin s in orbital state k whereas the dot is in spin
state σ . By SU(2) symmetry, the amplitude of transition (6.10) satisfies

A|k′s ′,σ ′〉←|ks,σ 〉 = Ak′k
1
4 (σs ′s · σσ ′σ ) . (6.11)

Transition (6.10) is elastic in the sense that the number of quasiparticles in the final state of
the transition is the same as that in the initial state (in other words, transition (6.10) is not
accompanied by the production of electron–hole pairs). Therefore, the imaginary part of the
t-matrix can be calculated with the help of the optical theorem [51], which yields

− πν Im Ts = 1
2

∑
σ

∑
s ′σ ′

∣∣πνA2
|k′s ′,σ ′〉←|ks,σ 〉

∣∣ . (6.12)

The factor 1/2 here accounts for the probability of having spin σ on the dot in the initial state of
the transition. Substitution of the tunnelling amplitude in the form (6.11) into equation (6.12)
and summation over the spin indices with the help of the identity (2.7) result in

− πν Im Ts = 3π2

16
ν2

∣∣A2
k′k

∣∣ . (6.13)

The amplitude Ak′k in equations (6.11) and (6.13) depends only on the difference of
energies ω = ξk′ − ξk ,

Ak′k = A(ω).

In the leading (first) order in J one readily obtains A(1) = J , independently of ω. However,
as discovered by Kondo [5], the second-order contribution A(2) not only depends on ω, but is
logarithmically divergent as ω → 0:

A(2)(ω) = ν J 2 ln |/ω|.
Here  is the high-energy cut-off in Hamiltonian (5.12). It turns out [50] that similar
logarithmically divergent contributions appear in all orders of perturbation theory,

νA(n)(ω) = (ν J )n
[
ln |/ω|]n−1

,
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resulting in a geometric series

νA(ω) =
∞∑

n=1

νA(n) = ν J
∞∑

n=0

[
ν J ln |/ω|]n = ν J

1 − ν J ln |/ω| .

With the help of the definition of the Kondo temperature (6.1), this can be written as

νA(ω) = 1

ln |ω/TK| . (6.14)

Substitution of (6.14) into equation (6.13) and then into equation (6.8), and evaluation of the
integral over ω with logarithmic accuracy, yield for the conductance across the dot

G = G0
3π2/16

ln2(T/TK)
, T � TK. (6.15)

Equation (6.15) is the leading term of the asymptotic expansion in powers of 1/ ln(T/TK), and
represents the conductance in the leading logarithmic approximation.

Equation (6.15) resulted from summing up the most-diverging contributions in all orders of
perturbation theory. It is instructive to re-derive it now in the framework of the renormalization
group [52]. The idea of this approach rests on the observation that the electronic states that give
a significant contribution to observable quantities, such as conductance, are states within an
interval of energies of width ω ∼ T about the Fermi level; see equation (6.8). At temperatures
of the order of TK, when the Kondo effect becomes important, this interval is narrow compared
to the width of the band D =  in which the Hamiltonian (5.12) is defined.

Consider a narrow strip of energies of the width δD � D near the edge of the band.
Any transition (6.10) between a state near the Fermi level and one of the states in the strip is
associated with high (∼) energy deficit, and, therefore, can only occur virtually. Obviously,
virtual transitions via each of the states in the strip result in the second-order correction ∼J 2/D
to the amplitude A(ω) of the transition between states in the vicinity of the Fermi level. Since
the strip contains νδD electronic states, the total correction is [52]

δA ∼ ν J 2δD/D.

This correction can be accounted for by modifying the exchange constant in the effective
Hamiltonian H̃eff which is defined for states within a narrower energy band of width
D − δD [52],

H̃eff =
∑

ks

ξkψ
†
ksψks + JD−δD(sψ · S), |ξk | < D − δD, (6.16)

JD−δD = JD + ν J 2
D

δD

D
. (6.17)

Here JD is the exchange constant in the original Hamiltonian. Note that H̃eff has the same
form as equation (5.12). This is not merely a conjecture, but can be shown rigorously [45, 53].

The reduction of the bandwidth can be considered to be a result of a unitary transformation
that decouples the states near the band edges from the rest of the band. In principle, any
such transformation should also affect the operators that describe the observable quantities.
Fortunately, this is not the case for the problem at hand. Indeed, angle θ0 in equation (6.6) is
not modified by the transformation. Therefore, the current operator and the expression for the
conductance (6.8) retain their form.

Successive reductions of D by small steps δD can be viewed as a continuous process during
which the initial Hamiltonian (5.12) with D =  is transformed to an effective Hamiltonian
of the same form that acts within the band of the reduced width D � . It follows from (6.17)
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that the dependence of the effective exchange constant on D is described by the differential
equation [52, 53]

d JD

dζ
= ν J 2

D, ζ = ln(/D). (6.18)

With the help of equation (6.1), the solution of the RG equation (6.18) subject to the initial
condition J = J can be cast in the form

ν JD = 1

ln(D/TK)
.

The renormalization described by equation (6.18) can be continued until the bandwidth D
becomes of the order of the typical energy |ω| ∼ T for real transitions. After this limit has
been reached, the transition amplitude A(ω) is calculated in lowest (first) order of perturbation
theory in the effective exchange constant (higher order contributions are negligibly small for
D ∼ ω),

νA(ω) = ν JD∼|ω| = 1

ln |ω/TK| .
Now using equations (6.13) and (6.8), we recover equation (6.15).

6.3. Strong-coupling regime: T � TK

As temperature approaches TK, the leading logarithmic approximation result (6.15) diverges.
This divergence signals the failure of the approximation. Indeed, we are considering a model
with single-mode junctions between the dot and the leads. The maximal possible conductance
in this case is 2e2/h. To obtain a more precise bound,we discuss in this section the conductance
in the strong-coupling regime T � TK.

We start with the zero-temperature limit T = 0. As discussed above, the ground state of
the Kondo model (5.12) is a singlet [44], and, accordingly, is not degenerate. Therefore,
the t-matrix of the conduction electrons interacting with the localized spin is completely
characterized by the scattering phase shifts δs for electrons with spin s at the Fermi level.
The t-matrix is then given by the standard scattering theory expression [51]

− πνTs(0) = 1

2i
(Ss − 1) , Ss = e2iδs , (6.19)

where Ss is the scattering matrix for electrons with spin s, which for a single-channel case
reduces to its eignevalue. Substitution of (6.19) into equation (6.8) yields

G(0) = G0
1
2

∑
s

sin2 δs (6.20)

for the conductance; see equation (6.8). The phase shifts in (6.19) and (6.20) are obviously
defined only mod π (that is, δs and δs + π are equivalent). This ambiguity can be removed if
we set to zero the values of the phase shifts at J = 0 in equation (5.12).

In order to find the two phase shifts δs , we need two independent relations. The first
one follows from the invariance of the Kondo Hamiltonian (5.12) under the particle–hole
transformation ψks → sψ†

−k,−s (here s = ±1 for spin-up/down electrons). The particle–hole
symmetry implies the relation for the t-matrix

Ts(ω) = −T ∗
−s(−ω), (6.21)

valid at all ω and T . In view of equation (6.19), it translates into the relation for the phase
shifts at the Fermi level (ω = 0) [54],

δ↑ + δ↓ = 0. (6.22)
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The second relation follows from the requirement that the ground state of
Hamiltonian (5.12) is a singlet [54]. In the absence of exchange (J = 0) and at T = 0,
an infinitesimally weak (B → +0) magnetic field acting on the dot’s spin,

HB = BSz, (6.23)

would polarize it; here B is the Zeeman energy. Since a free electron gas has zero spin in
the ground state, the total spin in a very large but finite region of space V surrounding the dot
coincides with the spin of the dot, 〈Sz〉J=0 = −1/2. If the exchange with the electron gas is
now turned on, J > 0, a very weak field will not prevent the formation of a singlet ground
state. In this state, the total spin within V is zero. Such change of the spin is possible if the
numbers of spin-up and spin-down electrons within V have changed to compensate for the
dot’s spin: δN↑ − δN↓ = 1. By the Friedel sum rule, δNs are related to the scattering phase
shifts at the Fermi level, δNs = δs/π , which gives

δ↑ − δ↓ = π. (6.24)

Combining (6.22) and (6.24), we find |δs | = π/2. Equation (6.20) then yields for zero-
temperature and zero-field conductance across the dot [31]

G(0) = G0. (6.25)

Thus, the growth of the conductance with lowering the temperature is limited only by the value
of G0. This value (see equation (6.9)) depends only on the ratio of the tunnelling amplitudes
|tL0/tR0|. If |tL0| = |tR0|, then the conductance at T = 0 will reach the maximal value
G = 2e2/h allowed by quantum mechanics [31].

The maximal conductance,equation (6.25), is reached when a singlet state is formed by the
itinerant electrons interacting with the local spin, as described by the Kondo Hamiltonian (5.12).
Perturbation of this singlet [54] by a magnetic field B or temperature T leads to a decrease of
the conductance. This decrease is small as long as B and T are small compared to the singlet
‘binding energy’ TK. The reader is referred to the original papers [54] for the details. Here we
only quote the result [48] for the imaginary part of the t-matrix at |ω| and T small compared
to the Kondo temperature TK,

− πν Im Ts(ω) = 1 − 3ω2 + π2T 2

2T 2
K

. (6.26)

Substitution of (6.26) into (6.8) yields

G = G0
[
1 − (πT /TK)

2
]
, T � TK. (6.27)

Accordingly, corrections to the conductance are quadratic in temperature—a typical Fermi
liquid result [54]. The weak-coupling (T � TK) and the strong-coupling (T � TK) asymptotes
of the conductance have a strikingly different structure. Nevertheless, since the Kondo effect
is a crossover phenomenon rather than a phase transition [43–45, 47], the dependence G(T )
is a smooth and featureless [55] function throughout the crossover region T ∼ TK.

Finally, note that both equations (6.15) and (6.27) have been obtained here for the
particle–hole symmetric model (5.12). This approximation is equivalent to neglecting the
elastic co-tunnelling contribution to the conductance Gel. The asymptotes (6.15) and (6.27)
remain valid [24] as long as Gel/G0 � 1. The overall temperature dependence of the linear
conductance in the middle of the Coulomb blockade valley is sketched in figure 4.

6.4. Beyond linear response

In order to study transport through a quantum dot away from equilibrium we add to the effective
Hamiltonian (5.11)–(5.13) a term

HV = eV

2

(
N̂L − N̂R

)
(6.28)
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Figure 4. Sketch of the temperature dependence of the conductance in the middle of the Coulomb
blockade valley with S = 1/2 on the dot. The numbers in brackets refer to the corresponding
equations in the text.

describing a finite voltage bias V applied between the left (L) and right (R) electrodes. Here
we will evaluate the current across the dot at arbitrary V but under the simplifying assumption
that the dot–lead junctions are strongly asymmetric:

GL � GR.

Under this condition angle θ0 in (6.6) is small, θ0 ≈ |tL0/tR0| � 1. Expanding equation (6.7)
to linear order in θ0 we obtain

HV (θ0) = eV

2

(
N̂2 − N̂1

)
+ eV θ0

∑
ks

(
ψ

†
1ksψ2ks + H.c.

)
. (6.29)

The first term in the rhs here can be interpreted as the voltage bias between the reservoirs of
1 and 2 particles (cf equation (6.28)), while the second term has an appearance of k-conserving
tunnelling with very small (proportional to θ0 � 1) tunnelling amplitude.

Similar to equation (6.29), the current operator Î (see (6.5)) splits naturally into two parts,

Î = Î0 + δ Î ,

Î0 = d

dt

e

2

(
N̂1 − N̂2

) = −ie2V θ0

∑
ks

ψ
†
1ksψ2ks + H.c.,

δ Î = −eθ0
d

dt

∑
ks

ψ
†
1ksψ2ks + H.c.

It turns out that δ Î does not contribute to the average current in the leading (second) order in
θ0 [33]. The remaining contribution I = 〈

Î0
〉

corresponds to tunnelling current between two
bulk reservoirs containing 1 and 2 particles. Its evaluation yields [33]

d I

dV
= G0

1

2

∑
s

[−πν Im Ts(eV )] (6.30)

for the differential conductance across the dot at zero temperature. Here G0 coincides with the
small-θ0 limit of equation (6.9). Now using equations (6.13), (6.14), and (6.26), we obtain

1

G0

d I

dV
=




1 − 3

2

(
eV

TK

)2

, eV � TK

3π2/16

ln2(eV/TK)
, eV � TK.

(6.31)
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Thus, a large voltage bias has qualitatively the same destructive effect on the Kondo physics
as the temperature does. The result (6.31) remains valid as long as T � eV � δE . If the
temperature exceeds the bias, T � eV , the differential conductance coincides with the linear
conductance; see equations (6.15) and (6.27) above.

7. Kondo effect in quantum dots with large spin

If the dot’s spin exceeds 1/2 [56–58], then, as discussed in section 5 above, both exchange
constants Jγ in the effective Hamiltonian (5.2) are finite and positive. This turns out to have
a dramatic effect on the dependence of the conductance in the Kondo regime on temperature
T and on Zeeman energy B . Unlike the case of S = 1/2 on the dot (see figure 4), now the
dependences on T and B are non-monotonic: initial increase of G is followed by a drop when
the temperature is lowered [24, 59] at B = 0; the variation of G with B at T = 0 is similarly
non-monotonic.

The origin of this peculiar behaviour is easier to understand by considering the B-
dependence of the zero-temperature conductance [24]. We assume that the magnetic field
H‖ is applied in the plane of the dot. Such a field leads to the Zeeman splitting B of the spin
states of the dot (see equation (6.23)), but barely affects the orbital motion of electrons.

At any finite B the ground state of the system is not degenerate. Therefore, the linear
conductance at T = 0 can be calculated from the Landauer formula

G = e2

h

∑
s

∣∣S2
s;RL

∣∣ , (7.1)

which relates G to the amplitude of scattering Ss;RL of an electron with spin s from lead L to
lead R. The amplitudes Ss;αα′ form a 2 × 2 scattering matrix Ŝs . In the basis of ‘channels’ (see
equation (5.2)), this matrix is obviously diagonal, and its eigenvalues exp(2iδγ s) are related to
the scattering phase shifts δγ s . The scattering matrix in the original (R − L) basis is obtained
from

Ŝs = Û †diag{e2iδγ s }Û ,
where Û is a matrix of a rotation by an angle θ0; see equation (6.6). The Landauer formula (7.1)
then yields

G = G0
1
2

∑
s

sin2(δ1s − δ2s), G0 = 2e2

h
sin2(2θ0), (7.2)

which generalizes the single-channel expression (6.20).
Equation (7.2) can be further simplified for a particle–hole symmetric model (5.2). Indeed,

in this case the phase shifts satisfy δγ↑ + δγ↓ = 0 (cf equation (6.22)), which suggests a
representation

δγ s = sδγ .

Substitution into (7.2) then results in

G = G0 sin2(δ1 − δ2). (7.3)

If the spin on the dot S exceeds 1/2, then both channels of itinerant electrons participate
in the screening of the dot’s spin [42]. Accordingly, in the limit B → 0 both phase shifts δγ
approach the unitary limit value π/2; see figure 5. However, the increase of the phase shifts
on lowering the field is characterized by two different energy scales. These scales, the Kondo
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Figure 5. Dependence of the scattering phase shifts at the Fermi level on the magnetic field for
S > 1/2 (left panel) and S = 1/2 (right panel).

Figure 6. Sketch of the magnetic field dependence of the Kondo contribution to the linear
conductance at zero temperature. The conductance as function of temperature exhibits a similar
non-monotonic dependence.

temperatures T1 and T2, are related to the corresponding exchange constants in the effective
Hamiltonian (5.2),

ln

(


Tγ

)
∼ 1

ν Jγ
,

so that T1 > T2 for J1 > J2. It is then obvious from equation (7.3) that the conductance across
the dot is small both at weak (B � T2) and strong (B � T1) fields, but may become large
(∼G0) at intermediate fields T2 � B � T1; see figure 6. In other words, the dependence of
zero-temperature conductance on the magnetic field is non-monotonic.

This non-monotonic dependence is in sharp contrast with the monotonic increase of the
conductance with lowering the field when S = 1/2. Indeed, in the latter case it is the channel
whose coupling to the dot is the strongest that screens the dot’s spin, while the remaining
channel decouples at low energies [42]; see figure 5.

The dependence of the conductance on temperature G(T ) is very similar to G(B).8 For
example, for S = 1 one obtains [24]

G/G0 =



(πT )2

(
1

T1
− 1

T2

)2

, T � T2

π2

2

[
1

ln(T/T1)
− 1

ln(T/T2)

]2

, T � T1.

(7.4)

The conductance reaches its maximal value Gmax at T ∼ √
T1T2. The value of Gmax can be

found analytically for T1 � T2. For S = 1 the result reads [24]

Gmax = G0

[
1 − 3π2

ln2(T1/T2)

]
. (7.5)

8 Note, however, that 〈ψ†
1 (t)ψ2(t)ψ

†
2 (0)ψ1(0)〉 �= 〈ψ†

1 (t)ψ1(0)〉〈ψ2(t)ψ
†
2 (0)〉 at finite T . Therefore, unlike (6.20),

equation (6.8) does not allow for a simple generalization to the two-channel case.
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Consider now a Coulomb blockade valley with N = even electrons and spin S = 1 on the
dot. In a typical situation, the dot’s spin in two neighbouring valleys (with N ± 1 electrons) is
1/2. Under the conditions of applicability of approximation (5.5), there is a single non-zero
exchange constant JN±1 for each of these valleys. If the Kondo temperatures TK are the same
for both valleys with S = 1/2, then JN+1 = JN−1 = Jodd. Each of the two singly occupied
energy levels in the valley with S = 1 is also singly occupied in one of the two neighbouring
valleys. It then follows from equations (5.4)–(5.6) that the exchange constants J1,2 for S = 1
satisfy

J1 + J2 = 1
2 (JN+1 + JN−1) = Jodd.

Since both J1 and J2 are positive, this immediately implies that J1,2 < Jodd. Accordingly,
both Kondo temperatures T1,2 are expected to be smaller than TK in the nearby valleys with
S = 1/2.

This consideration, however, is not applicable when the dot is tuned to the vicinity of the
singlet–triplet transition in its ground state [7, 8, 57, 58], i.e. when the energy gap between
the triplet ground state and the singlet excited state of an isolated dot is small compared to the
mean level spacing δE . In this case the exchange constants in the effective Hamiltonian (5.2)
should account for additional renormalization that the system’s parameters undergo when the
high-energy cut-off (the bandwidth of the effective Hamiltonian) D is reduced from D ∼ δE
down to D ∼  � δE [60]; see also [49]. The renormalization enhances the exchange
constants J1,2. If the ratio /δE is sufficiently small, then the Kondo temperatures T1,2 for
S = 1 may become of the same order [56, 58], or even significantly exceed [7, 8, 57] the
corresponding scale TK for S = 1/2.

In GaAs-based lateral quantum dot systems the value of can be controlled by a magnetic
field H⊥ applied perpendicular to the plane of the dot [57]. Because of the smallness of the
effective mass m∗, even a weak field H⊥ has a strong orbital effect. At the same time, the
smallness of the quasiparticle g-factor in GaAs ensures that the corresponding Zeeman splitting
remains small [8]. The theory of the Kondo effect in lateral quantum dots in the vicinity of the
singlet–triplet transition was developed in [61]; see also [62].

8. Discussion

In the simplest form of the Kondo effect considered in this review, a quantum dot behaves
essentially as an artificial ‘magnetic impurity’ with spin S, coupled via exchange interaction
to two conducting leads. The details of the temperature dependence G(T ) of the linear
conductance across a lateral quantum dot depend on the dot’s spin S. In the most common
case of S = 1/2 the conductance in the Kondo regime monotonically increases with the
decrease of temperature, potentially up to the quantum limit 2e2/h. Qualitatively (although
not quantitatively), this increase can be understood from the Anderson impurity model in which
the dot is described by a single energy level. In contrast, when spin on the dot exceeds 1/2,
the evolution of the conductance proceeds in two stages: the conductance first rises, and then
drops again when the temperature is lowered.

In a typical experiment [3], one measures the dependence of the differential conductance
on temperature T , Zeeman energy B , and dc voltage bias V . When one of these parameters is
much larger than the other two, and is also large compared to the Kondo temperature TK, the
differential conductance exhibits a logarithmic dependence

1

G0

d I

dV
∝

[
ln

max{T, B, eV }
TK

]−2

, (8.1)
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characteristic for the weak-coupling regime of the Kondo system. Consider now a zero-
temperature transport through a quantum dot with S = 1/2 in the presence of a strong field
B � TK. In accordance with (8.1), the differential conductance is small compared to G0 both
for eV � B and for eV � B . However, the calculation in the third order of perturbation theory
in the exchange constant yields a contribution that diverges logarithmically at eV = B [36].
The divergence appears because at eV = B the scattered electron has just the right amount
of energy to allow for a real transition with a flip of spin. However, the full development of
resonance is inhibited by a finite lifetime of the excited spin state of the dot [41, 63]. As a
result, the peak in the differential conductance at eV ∼ B is broader and lower [41] than the
corresponding peak at zero bias in the absence of the field. Even though for eV ∼ B � TK

the system is clearly in the weak-coupling regime, a resummation of the perturbation series
turns out to be a very difficult task, and the detailed shape of the peak is still unknown. This
problem remains a subject of active research; see e.g. [64] and references therein.

One encounters similar difficulties in studies of the effect of a weak ac excitation of
frequency � � TK applied to the gate electrode [65] on transport across the dot. In close
analogy with the usual photon-assisted tunnelling [66], such perturbation is expected to result
in the formation of satellites [67] at eV = nh̄� (here n is an integer) to the zero-bias peak in
the differential conductance. Again, the formation of the satellite peaks and the survival of the
zero-bias peak in the presence of the ac excitation are limited by the finite-lifetime effects [68].

The spin degeneracy is not the only possible source of the Kondo effect in quantum dots.
Consider, for example, a large dot connected by a single-mode junction to a conducting lead
and tuned to the vicinity of the Coulomb blockade peak [22]. If one neglects the finite level
spacing in the dot, then the two almost degenerate charge states of the dot can be labelled by a
pseudospin, while the real spin plays the part of the channel index [22, 69]. This set-up turns out
to be a robust realization [22, 69] of the symmetric (i.e. having equal exchange constants) two-
channel S = 1/2 Kondo model [42]. The model results in a peculiar temperature dependence
of the observable quantities, which at low temperatures follow power laws with manifestly
non-Fermi-liquid fractional powers.

It should be emphasized that in the usual geometry, consisting of two leads attached to
a small9 Coulomb-blockaded quantum dot with S = 1/2, only the conventional Fermi-liquid
behaviour can be observed at low temperatures. Indeed, in this case the two exchange constants
in the effective exchange Hamiltonian (5.2) are vastly different, and their ratio is not tunable
by conventional means; see the discussion in section 5 above. A way around this difficulty
was proposed recently in [70]. The key idea is to replace one of the leads in the standard
configuration by a very large quantum dot, characterized by a level spacing δE ′ and a charging
energy E ′

C. At T � δE ′, particle–hole excitations within this dot are allowed, and electrons in
it participate in the screening of the smaller dot’s spin. At the same time, as long as T � E ′

C,
the number of electrons in the large dot is fixed. Therefore, the large dot provides for a separate
screening channel which does not mix with that supplied by the remaining lead. In this system,
the two exchange constants are controlled by the conductances of the dot–lead and dot–dot
junctions. A strategy for tuning the device parameters to the critical point characterized by the
two-channel Kondo physics is discussed in [71].

Finally, we should mention that the description based on the universal Hamiltonian (2.13)
is not applicable to large quantum dots subjected to a quantizing magnetic field H⊥ [72, 73].
Such a field changes drastically the way the screening occurs in a confined droplet of a two-
dimensional electron gas [74]. The droplet is divided into alternating domains containing
compressible and incompressible electron liquids. In the metal-like compressible regions, the

9 i.e. with appreciable level spacing.
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screening is almost perfect. In contrast, the incompressible regions behave very much like
insulators. In the case of lateral quantum dots, a large compressible domain may be formed
near the centre of the dot. This domain is surrounded by a narrow incompressible region
separating it from another compressible ring-shaped domain formed along the edges of the
dot [75]. This system can be viewed as two concentric capacitively coupled quantum ‘dots’—
the core dot and the edge dot [72, 75]. When the leads are attached to the edge dot, the measured
conductance is sensitive to its spin state: if the number of electrons in the edge dot is odd,
then the conductance becomes large due to the Kondo effect [72]. Changing the field causes
redistribution of electrons between the core and the edge, resulting in a striking chequerboard-
like pattern of high- and low-conductance regions [72, 73]. This behaviour persists as long as
the Zeeman energy remains small compared to the Kondo temperature. Note that compressible
regions are also formed around an antidot—a potential hill in a two-dimensional electron gas in
the quantum Hall regime [76]. Both Coulomb blockade oscillations and Kondo-like behaviour
have been observed in these systems too [77].

9. Summary

The Kondo effect arises whenever a coupling to a Fermi gas induces transitions within otherwise
degenerate ground state multiplet of an interacting system. Both coupling to a Fermi gas and
interactions are naturally present in a nanoscale transport experiment. At the same time, many
nanostructures can be easily tuned to the vicinity of a degeneracy point. This is why the
Kondo effect in its various forms often influences the low-temperature transport in meso-and
nanoscale systems.

In this article we reviewed the theory of the Kondo effect in transport through quantum
dots. A Coulomb-blockaded quantum dot behaves in many aspects as an artificial ‘magnetic
impurity’ coupled via exchange interaction to two conducting leads. The Kondo effect in
transport through such an ‘impurity’ manifests itself in the lifting of the Coulomb blockade
at low temperatures, and, therefore, can be unambiguously identified. Quantum dot systems
not only offer a direct access to transport properties of an artificial impurity, but also provide
one with a broad arsenal of tools to tweak the impurity properties, unmatched in conventional
systems. The characteristic energy scale for the intradot excitations is much smaller than the
corresponding scale for natural magnetic impurities. This allows one to induce degeneracies
in the ground state of a dot which are more exotic than just the spin degeneracy. This is only
one of many possible extensions of the simple model discussed in this review.
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